Current practice of chronic hepatitis B treatment in Southern Italy

T. Stroffolini a, A. Spadaro b, V. Di Marco c, G. Scifo d, M. Russello e, G. Montalto f, G. Bertino g, L. Surace h, B. Caroleo i, G. Foti j, V. Portelli k, S. Madonia l, M. Sapienza m, L. Cosco n, P. Fruguele o, A. Galdiery p, N. Brandolino q, R. Siciliano r, S. Bruno s, P.L. Almasio c,t and The Gr.E.Ca.S. Hospitals' Collaborating Group t

a Department of Infectious and Tropical Diseases, Policlinico Umberto I, Rome, Italy
b U.O.C. di Medicina Interna a Indirizzo Gastroenterologico A.O.U., Messina, Italy
c Gastroenterologia & Epatologia, Di.Bi.M.I.S., Università di Palermo, Palermo, Italy
d U.O.C. Malattie Infettive Ospedale Umberto I Siracusa, Italy
e U.O.D. di Epatologia A.R.N.A.S. Garibaldi, Catania, Italy
f U.O. di Medicina Interna ed Epatologia Università di Palermo, Palermo, Italy
g U.O.S. di Malattie del Fegato - A.O. Policlinico-Vittorio Emanuele, Catania, Italy
h U.O.M. di Malattie Infettive, U.O.C. Malattie Infettive e Drenaggio Drenaggio, A.O. Mater Domini, Catanzaro, Italy
i U.O. Malattie Infettive Ospedale Melscrino Morelli, Reggio Calabria, Italy
j U.O. Malattie Infettive Ospedale S. Antonio Abate, Trapani, Italy
k Med. Interna 2 Ospedali Rioni Villa Sofia Cervello, Palermo, Italy
l U.O.M. Malattie Infettive "S. Felice" Ospedale, "C. Basiliotta", Nicosia, Italy
m U.O. Malattie Infettive A.O. "Puglise-Ciaccio", Catanzaro, Italy
n U.O.C. Medicina Interna e Reumatologia Ospedale Annunziata A. O. Cosenza, Italy
o U.O. di Medicina Generale, Servizio di Epatologia, Ospedale Crotone, Italy
p U.O.S. di Malattie A. O. "Bianchi-Melacrino-Morelli" Reggio Calabria, Italy
q U.O. Medicina Interna P.O. Acireale - ASP Catania, Italy
r U.O. Malattie Infettive Ospedale Civitella Barcellona Pozzo di Gotto ASP Messina, Italy
t U.O.C. Malattie Infettive Ospedale Santa Maria Assunta di Cefalonia - A.O. Mater Domini, Catanzaro, Italy

Article history:
Received 25 January 2012
Received in revised form 15 March 2012
Accepted 31 March 2012
Available online 25 April 2012

Keywords:
HBV
Interferon
Nucleosides analogues
Nucleotides analogues

Abstract

Background: Treatment choice for chronic HBV infection is a continuously evolving issue, with a wide range of options. We aimed to evaluate the current practice of HBV therapies in the real world in Southern Italy.

Methods: A prospective study enrolling over a six month period (February–July 2010) all consecutive HBsAg positive subjects, never previously treated, referred to 16 liver units in two Southern Italy regions (Calabria and Sicily).

Results: Out of 247 subjects evaluated, 116 (46.9%) had HBV-DNA undetectable or lower than 2000 IU/ml. There were 108 (43.7%) inactive carriers, 103 (41.7%) chronic hepatitis, and 36 (14.6%) liver cirrhosis. Anti-viral treatment was planned in 94 (38.0%) patients (26 cases with Interferon or Pegylated Interferon and 68 with nucleos(t)ides analogues). As many as 49.5% of subjects with chronic hepatitis did not receive antiviral treatment.

Discussion: The majority of chronic HBsAg carrier referring centres for evaluation were not considered suitable for antiviral treatment. Nucleos(t)ides analogues are the preferred first choice for therapy. A long-lasting period of observation may be needed to make appropriate therapeutic decisions in several cases.

© 2012 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
three Italian scientific societies [1–4]. The key difference between these guidelines is the adoption of a different threshold of HBV-DNA and ALT levels for treatment (Table 1).

Treatment choice is a continuously evolving issue with a wide range of options. Seven drugs are now available for the treatment of chronic hepatitis B in Italy. They include recombinant Alpha Interferon (rIFN), Pegylated Alpha Interferon (PEG-IFN), nucleoside analogues, Lamivudine (LAM), Telbivudine (LdT), and Entecavir (ETV), and nucleotide analogues, Adefovir dipivoxyl (ADV) and Tenofovir (TDF).

However, information on the current practice of HBV treatment in the real world is lacking. Recently, we have evaluated the effectiveness of hepatitis C virus (HCV) treatment in Southern Italy [5]. It has allowed us a good opportunity to evaluate in the same area even the current practice of HBV infection treatment.

2. Methods

2.1. Study population

During a six month period (February–July 2010) all consecutive HBsAg positive subjects, who never had previously received antiviral therapies, referred to 16 liver units located in two southern Italian Regions (Calabria and Sicily) were recruited. Patients were eligible for the study if they were older than 18 years of age, had a positive HBsAg test by ELISA, regardless of HBV-DNA titre. Those that were found to have decompensated liver cirrhosis or hepatocellular carcinoma (HCC) were excluded.

At the time of enrolment, all patients received comprehensive counselling by a treating clinician, including natural history and prognosis of chronic HBV infection and treatment options. The treating physician at each centre was a gastroenterologist, hepatologist, or infectious disease specialist who was experienced in the management of patients with chronic HBV infection. Patients were evaluated for HBV therapies by the clinician using standardised criteria based on the current international treatment guidelines.

There is a common way, among the different centres, to manage HBV naive patients, as all are referral centres members of the Italian Association Study Liver Diseases (AISF).

Demographic information and results of laboratory testing were recorded on standardised data collection sheet. Diagnostic criteria for inactive carrier, chronic hepatitis and liver cirrhosis were used according to the American guideline [6]. An inactive carrier was defined as a person with persistent HBV infection of the liver without significant necroinflammation at liver biopsy; chronic hepatitis and liver cirrhosis as chronic necroinflammatory hepatic disease caused by persistent infection with HBV.

2.2. Laboratory assay

HBV markers, anti-hepatitis C virus (HCV), anti-hepatitis D virus (HDV), and anti-human immunodeficiency virus (HIV) were determined by ELISA tests. Serum HBV-DNA levels were determined by a commercial Real Time PCR assay (Abbott, Realtime, USA) with a sensitivity threshold of 10 IU/ml. Laboratory assays were performed in the various hospitals participating in the investigation.

2.3. Statistical analysis

Continuous variables were expressed as mean and standard deviation (SD), and Student’s t test was used. Categorical variables were reported as absolute and percentage values, and compared by using chi-squared test. A p value <0.05 was considered to be significant. All reported p values were two sided.

3. Results

During the study period 247 HBsAg positive subjects were enrolled. Their mean age was 48.9 years, with a male preponderance (55.5%). The majority of subjects (53.0%) reported more than 5 years of awareness of HBsAg positivity. The proportion of HBsAg positive patients was 13.4%. Co-infection with HDV, or HCV or HIV was reported in 6.1%, 6.1%, and 3.6% respectively. The majority of cases (46.9%) had HBV-DNA undetectable or lower than 2000 IU/ml. Half of cases (49.0%) had normal transaminases values and one-third (46.9%) had HBV-DNA undetectable or lower than 2000 IU/ml.

The baseline of 247 HBsAg positive subjects.

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) (mean ± S.D.)</td>
<td>48.9 ± 13.8 (19–82)</td>
</tr>
<tr>
<td>Gender</td>
<td>Male 137 (55.5%), Female 110 (44.5%)</td>
</tr>
<tr>
<td>Years of awareness of HBsAg positivity</td>
<td><1 50 (23.3%), 1–5 51 (23.7%), >5 114 (53.0%)</td>
</tr>
<tr>
<td>HBsAg positive</td>
<td>33 (13.4%)</td>
</tr>
<tr>
<td>Anti-HBV positive</td>
<td>15 (6.1%)</td>
</tr>
<tr>
<td>Anti-HCV positive</td>
<td>15 (6.1%)</td>
</tr>
<tr>
<td>Anti-HIV positive</td>
<td>9 (3.6%)</td>
</tr>
<tr>
<td>HBV-DNA (IU/ml)</td>
<td>Undetectable ≤2000 5 (2.0%), >2000 111 (44.9%), 2000–20,000 43 (17.4%), >20,000 88 (35.6%)</td>
</tr>
<tr>
<td>ALT (ULN)</td>
<td><1 21 (49.0%), 1–2 64 (25.9%), 2–5 51 (20.6%), >5 11 (4.5%)</td>
</tr>
<tr>
<td>Diagnostic category</td>
<td>Inactive carrier 108 (43.7%), Chronic hepatitis 103 (41.7%), Liver cirrhosis 36 (14.6%)</td>
</tr>
<tr>
<td>Treatment received</td>
<td>No drug 153 (62.0%), rIFN/PEG-IFN 26 (10.5%), Nucleos(t)ide analogues 68 (27.5%)</td>
</tr>
</tbody>
</table>

* Some data are missing. ULN: upper limit of normal.
Table 3: Comparison of 247 chronic HBsAg according to decision for treatment.

<table>
<thead>
<tr>
<th>Year of awareness of HBsAg positivity</th>
<th>No treatment (n = 153)</th>
<th>Treatment (n = 94)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤1</td>
<td>110 (71.9%)</td>
<td>21 (11.7%)</td>
<td>0.001</td>
</tr>
<tr>
<td>>1</td>
<td>27 (17.6%)</td>
<td>37 (39.4%)</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>15 (9.8%)</td>
<td>36 (38.3%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Diagnostic category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactive carrier</td>
<td>99 (64.7%)</td>
<td>9 (9.6%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Liver cirrhosis</td>
<td>51 (33.3%)</td>
<td>52 (55.3%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Comparison of chronic HBsAg carriers according to drug received.

<table>
<thead>
<tr>
<th>Drug received</th>
<th>rIFN/PEG-IFN (n = 26)</th>
<th>Nucleos(t)ide analogue (n = 68)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>(mean ± S.D.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤30</td>
<td>20 (13.1%)</td>
<td>0.4 (3.3%)</td>
<td>0.002</td>
</tr>
<tr>
<td>31–40</td>
<td>38 (24.8%)</td>
<td>13 (13.8%)</td>
<td>0.002</td>
</tr>
<tr>
<td>41–50</td>
<td>35 (22.9%)</td>
<td>19 (20.2%)</td>
<td>0.002</td>
</tr>
<tr>
<td>>50</td>
<td>60 (39.2%)</td>
<td>58 (61.7%)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>73 (47.7%)</td>
<td>37 (39.4%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Female</td>
<td>80 (52.3%)</td>
<td>57 (60.6%)</td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion

Treatment of chronic hepatitis B has greatly changed over the last few years. Despite the availability of several effective drugs, areas of uncertainty exist and often therapeutical choices are made on the basis of evidence that is not fully mature. Moreover, information on current practice of HBV treatment in the real world is lacking. The present prospective survey, including patients never previously treated from several units (thus avoiding the single centre effect) may provide representative and valuable findings on this topic.

The large number of centres participating in this study may raise some concern for the homogeneity with which HBV patients have been evaluated and treated by the different involved centres. However, it should be taken into account that all were referral centre members of the Italian Association Study Liver (AISF), which adopts the same protocol in the management of HBV patients.

Nearly half of HBsAg carriers referring centres for evaluation have undetectable HBV-DNA or viral load below the threshold (2000 IU/ml) considered suitable for treatment. This figure likely underestimates the true proportion of inactive carriers in the general population, because subjects were selected and referred to participating centres by their general practitioners in order to potentially be treated. The majority (61.9%) of HBsAg carriers were not considered suitable for treatment. Among those treated nucleos(t)ide analogues are the preferred first choice as two-thirds of them receive these drugs. As expected, subjects treated with rIFN/PEG-IFN are more likely to be younger and without liver cirrhosis. Co-infection with other viruses (i.e., HDV, or HCV, or HIV) does not affect the choice.

Some pitfalls in treatment practice emerge. Treatment was provided to 9 (8.3%) out of the 108 inactive carriers. In contrast, and more importantly, as many as 51 (49.5%) out of the 103 chronic hepatitis cases did not receive any treatment despite EASL guidelines recommend to treat most of these cases [2]. The latter point represents a major pitfall. In fact, under treatment of chronic hepatitis cases limits the effectiveness of efficacious drugs currently available for treatment of chronic hepatitis. However, it should be considered that a limited period of observation cannot be exhaustive to take appropriate decision regarding timing and type of treatment as changes or fluctuation of viral load over time may occur [7]. It may explain why in some chronic hepatitis cases therapy was not provided during the study period.

Even if we are aware that the short period considered (6 months) may represent a source of bias that could affect the findings, this real world survey may provide the possible, even if not the best, picture of current treatment practice for HBV infection in Southern Italy.
Despite some limitations, this study may contribute to critically review therapeutic choices in actual clinical practice. The majority of HBsAg carriers don’t receive antiviral treatment. Nucleos(t)ide analogues are the preferred first choice for treatment. A long-lasting period of observation may be needed to make appropriate therapeutic decisions in several cases.

Learning Points

• Treatment choice of chronic HBV infection is a continuously evolving issue due to the introduction of several new and effective antiviral agents
• Information on the current practice of HBV treatment in the real world is lacking.
• The majority of HBsAg carriers don’t receive antiviral treatment.
• Nucleos(t)ide analogues are the preferred first choice for treatment.

Conflict of interest

The authors declare that they have no conflict of interest.

References